Convergence of Adversarial Training in Overparametrized Neural Networks

Ruiqi Gao*,1, Tianle Cai*,1, Haochuan Li2, Liwei Wang1, Cho-Jui Hsieh3, Jason D. Lee4

1 Peking University, 2 MIT, 3 UCLA, 4 Princeton University
* Joint first author.

NeurIPS 2019
Introduction

Deep learning models are vulnerable to adversarial attacks.

(a) Schoolbus

(b) Perturbation

+0.1 ×

(c) Ostrich

Figure: Szegedy et al. (2014)
Most common white-box defenses are based on *adversarial training*, that is, at each step we perform gradient descent on the loss evaluated at the adversarially perturbed data.
Most common white-box defenses are based on *adversarial training*, that is, at each step we perform gradient descent on the loss evaluated at the adversarially perturbed data.

We give the first proof of convergence of adversarial training based on sufficiently wide networks.
Most common white-box defenses are based on adversarial training, that is, at each step we perform gradient descent on the loss evaluated at the adversarially perturbed data.

We give the first proof of convergence of adversarial training based on sufficiently wide networks.

Our analysis leverages recent work on Neural Tangent Kernel (NTK), combined with motivation from online-learning, and the expressiveness of the NTK kernel in the ℓ_∞-norm.
Setting

Formalizing the problem:
- Neural network \(f(W, x) \).
Formalizing the problem:

- Neural network $f(W, x)$.
- Adversarial attack (PGD, FGSM, etc.) $A(W, x) = x' \in \mathcal{B}(x)$

 ($\mathcal{B}(x)$ is the allowed perturbation set e.g. ℓ_2 or ℓ_∞ ball centered at x.)
Formalizing the problem:

- Neural network $f(W, x)$.
- Adversarial attack (PGD, FGSM, etc.) $A(W, x) = x' \in B(x)$
 ($B(x)$ is the allowed perturbation set e.g. ℓ_2 or ℓ_∞ ball centered at x.)
- Adversarial training directly aims to minimize the surrogate loss

$$L_A(W) = \frac{1}{n} \sum_{i=1}^{n} \text{loss}(f(W, A(W, x_i)), y_i),$$

that is, the loss evaluated at the perturbed data generated by A.

Formalizing the problem:

- Neural network \(f(W, x) \).
- Adversarial attack (PGD, FGSM, etc.) \(\mathcal{A}(W, x) = x' \in \mathcal{B}(x) \) \((\mathcal{B}(x) \text{ is the allowed perturbation set e.g. } \ell_2 \text{ or } \ell_\infty \text{ ball centered at } x.) \)
- Adversarial training directly aims to minimize the \textit{surrogate loss}
 \[
 L_A(W) = \frac{1}{n} \sum_{i=1}^{n} \text{loss}(f(W, \mathcal{A}(W, x_i)), y_i),
 \]
 that is, the loss evaluated at the perturbed data generated by \(\mathcal{A} \).
- While the true \textit{robust loss} is
 \[
 L^*_*(W) = \frac{1}{n} \sum_{i=1}^{n} \max_{x_i' \in \mathcal{B}(x_i)} \text{loss}(f(W, x'_i), y_i).
 \]
Fully-connected ReLU network, input dimension d, H hidden layers with width m. Due to technical issues, we slightly modify the algorithm to projected adversarial training on a local region around initialization $B(R) = \{W : \|W(h) - W(h-1)\|_F \leq R \sqrt{m}, h = 1, \ldots, H\}$.

Fully-connected ReLU network, input dimension d, H hidden layers with width m.

Due to technical issues, we slightly modify the algorithm to projected adversarial training on a local region around initialization

$$B(R) = \left\{ W : \| W^{(h)} - W_0^{(h)} \|_F \leq \frac{R}{\sqrt{m}}, h = 1, \cdots, H \right\}.$$
Main Result

Theorem (Bounding the surrogate loss with the optimal robust loss)

Suppose \(m \geq \text{poly}(R, H, d, 1/\epsilon) \). With suitable assumptions and some \(T \) steps of training, we achieve

\[
\min_{t=1,\ldots,T} L_A(W_t) \leq \min_{W \in B(R)} L^*(W) + \epsilon.
\]

Corollary

Assume the network has approximation power \(\min_{W \in B(R)} L^*(W) \leq \epsilon \), then

\[
\min_{t=1,\ldots,T} L_A(W_t) \leq 2\epsilon.
\]
Additional results

For two-layer networks we derive a complete approximation result using random feature analysis.
Additional results

- For two-layer networks we derive a complete approximation result using random feature analysis.
- For two-layer networks, we derive a similar result without the need of projection.
Additional results

- For two-layer networks we derive a complete approximation result using random feature analysis.
- For two-layer networks, we derive a similar result without the need of projection.
- Why wide networks? We also derive an auxiliary VC-dimension result that implies achieving adversarial robustness requires more model capacity, e.g. width.
Thank you!

Welcome to our poster #115 for details and discussions!

Contact
Ruiqi Gao (grq@pku.edu.cn) and Tianle Cai (caitianle1998@pku.edu.cn) are applying for Ph.D. this year!
Please contact if you are interested!